Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study

Document Type: Research Article

Authors

1 College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq

2 Payame Noor University, Tehran, Iran

Abstract

In this work, density functional theory (DFT) calculations at the M06-2X/6-31+G* level are performed to the adsorption of COn (n=1, 2) and HnX (n=2, 3 and X=O, N)molecules onto pristine as well as Al- and Ga-doped B12N12 nanocages. We study the effect of Al- and Ga-doped on the sensing properties of B12N12 nanocages. We investigated several doping and adsorption possibilities. This study illustrates the electrical behavior which has been gainded from the B12N12, Al- and Ga-doped B12N12 nanocages upon the COn (n=1, 2) and HnX (n=2, 3 and X=O, N) molecules adsorption. The structural stability was based on the minimum energy and non-complex vibrational frequencies. The results represents that large forces of attraction in B12N12-NH3, AlB11N12-NH3 and GaB11N12-NH3 complexes with values of -1.54, -2.32 and -2.34 eV are compared to mentioned other configurations. Calculations unfold that the Al-doping B12N12 can significantly imprive both the adsorption energy and electronic properties of nanocage to NH3. For all configurations, the geometry optimizations, adsorption energy, energy gaps, NBO charge transfer, dipole moments, are computed. The computed DOS elucidates that a strong orbital hybridization occur between CO2, CO, H2O, NH3, pristine, Al- and Ga-doped B12N12 nanocages in adsorption process. Finally, the Al-doped B12N12 is awaited to be a potential novel sensor for indicating the presence COn (n=1, 2) and HnX (n=2, 3 and X=O, N) molecules.

Graphical Abstract

Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study

Keywords


[1] S.Mahajan, Pollution control in process industries; Tata McGraw-Hill Education: Noida, India, (1985).
[2] B. Timmer, W. Olthuis, A. Berg, Ammonia sensors and their applications—a review, Sensor Actuat B-Chem. 107 (2005) 666-677.
[3] S. Sepaniak, T. Forges, H. Gerard, B. Foliguet, M. C. Bene, P. Monnier-Barbarino, The influence of cigarette smoking on human sperm quality and DNA fragmentation, Toxicology, 223 (2006) 54-60.
[4] H. J. Freund, G. Meijer, M. Scheffler, R. Schlçgl, M. Wolf, CO Oxidation as a Prototypical Reaction for Heterogeneous Processes, Angew. Chem. Int. Ed. 2011, 50, 10064–10094; Angew. Chem., 123 (2011) 10242–10275.
[5] X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. J. Shen, Low-temperature oxidation of CO catalysed by Co(3)O(4) nanorods, Nature, 458 (2009) 746–749.
[6] S. Royer, D. Duprez, Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides, Chem. Cat. Chem. 3 (2011) 24–65.
[7] R. Kou, Y. Y. Shao, D. H. Mei, Z. Nie, D. H. Wang, C. M. Wang, V. V. Viswanathan, S. Park, I. A. Aksay, Y. H. Lin, Y. Wang, J. Liu, Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points, J. Am. Chem. Soc. 133 (2011) 2541–2547.
[8] E. J. Peterson, A. T. DeLaRiva, S. Lin, R. S. Johnson, H. Guo, J. T. Miller, J. Hun Kwak, C. H. F. Peden, B. Kiefer, L. F. Allard, F. H. Ribeiro, A. K. Datye, Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina, Nat. Commun. 5 (2014) 1-11.
[9] I. C. Prentice, et al., The Carbon Cycle and Atmospheric Carbon Dioxide. In: Climate Change (2001).
[10] S. K. Solanki, W. Livingston, T. Ayres, New Light on the Heart of Darkness the Solar chromosphere, Science. 263 (1994) 64_66.
[11] R. Sridharan, S. M. Ahmed, T. P. Das, P. Sreelatha, P. Pradeepkumar, N. Naika, G. Supriya, Direct evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I, Planet. Space Sci. 58 (2010) 947-950.
[12] I. Torkpoor, M. Heidari Nezhad Janjanpour, N. Salehi, F. Gharibzadeh, L. Edjlali, Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study, Chem. Rev. Lett. 1 (2018) 2-8.
[13] R. Rostamoghli, M. Vakili, A. Banaei, E. Pourbashir, K. Jalalierad, Applying the B12N12 nanoparticle as a sensor for CO, CO2, H2O and NH3 gasses, Chem. Rev. Lett. 1 (2018) 31-36.
[14] M. Heidari Nezhad Janjanpour, M. Vakili, S. Daneshmehr, K. Jalalierad, F. Alipour, Study of the Ionization Potential, Electron Affinity and HOMO-LUMO Gaps in the Small Fullerene Nanostructures, Chem. Rev. Lett. 1 (2018) 45-49.
[15] Siadati SA, Kula K, Babanezhad E, The possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid, Chem Rev Lett, 2019;2:2-6
[16] R.T. Paine, C.K. Narula, Synthetic routes to boron nitride, Chem. Rev. 90 (1990) 73-91.
[17] H.S. Wu, F.Q. Zhang, X.H. Xu, C.J. Zhang, H. Jiao, Geometric and Energetic Aspects of Aluminum Nitride Cages, J. Phys. Chem. A 107 (2003) 204-209.
[18] H.Y. Zhu, T.G. Schmalz, D.J. Klein, Alternant boron nitride cages: A theoretical study, Int. J. Quantum Chem. 63 (1997) 393-401.
[19] D. Goldberg, Y. Bando, O. Stepahan, K. Kurashima, Octahedral boron nitride fullerenes formed by electron beam irradiation, Appl. Phys. Lett. 73 (1998) 2441-2443.
[20] Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Potential of AlN Nanostructures as Hydrogen Storage Materials, ACS Nano 3 (2009) 621-626.
[21] T. Oku, A. Nishiwaki, I. Narita, M. Gonda, Formation and structure of B24N24 clusters, Chem. Phys. Lett. 380 (2003) 620-623.
[22] S. Xu, M. Zhang, Y. Zhao, B. Chen, J. Zhang, C.C. Sun, Stability and property of planar (BN)x clusters, Chem. Phys. Lett. 423 (2006) 212-214.
[23] G. Seifert, R. Fowler, D. Mitchell, D. Porezag, T. Frauenheim, Boron-nitrogen analogues of the fullerenes: electronic and structural properties, Chem. Phys. Lett. 268 (1997) 352-358.
[24] D. Strout, Structure and Stability of Boron Nitrides:  Isomers of B12N12, J. Phys. Chem. A 104 (2000) 3364-3366.
[25] D. Strout, Structure and Stability of Boron Nitrides:  The Crossover between Rings and Cages, J. Phys. Chem. A 105 (2001) 261-263.
[26] F. Jensen, H. Toftlund, Structure and stability of C24 and B12N12 isomers, Chem. Phys. Lett. 201 (1993) 89-96.
[27] T. Oku, A. Nishiwaki, I. Narita, Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation, Sci. Technol. Adv. Mater. 5 (2004) 635-638.
[28] T. Oku, M. Kuno, H. Kitahara, I. Nartia, Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials, Int. J. Inorg. Mater. 3 (2001) 597-612.
[29] J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Toxic CO detection by B12N12 nanocluster, Microelectron. 42 (2011) 1400–1403
[30] A. Ahmadi Peyghan, A. Soltani, A. Allah Pahlevani, Y. Kanani, S. Khajeh, A first-principles study of the adsorption behavior of CO on Al- and Ga-doped single-walled BN nanotubes, Applied Surface Science 270 (2013) 25–32.
 [31] E. Shakerzadeh, E. Khodayar, S. Noorizadeh, Theoretical assessment of phosgene adsorption behavior onto pristine, Al- and Ga-doped B12N12 and B16N16 nanoclusters, Comput. Mater. 118 (2016) 155–171.
[32] K. Kalateh, A. Abdolmanafi, Study of B12N12 and AlB11N12 fullerene as H2S absorbent and sensor by computational method, Journal of New Chemistry, 2 (2015) 172-178
[33] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, General atomic and molecular electronic structure system, J Comput. Chem. 14 (1993)1347–1363.
[34] S. Iijima, C. J. Brabec, A.Maiti, J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem. Phys. 104 (1996) 2089-2092.
[35] F. A. Bulat, A. Toro-Labbe, T. Brinck, J.S. Murray, P. Politzer, Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies, J. Mol. Model. 16 (2010)1679 – 1691.